Comments on "Handling soft modules in general nonslicing floorplan using Lagrangian relaxation"
نویسندگان
چکیده
In the early stage of floorplan design, many modules have large flexibilities in shape (soft modules). Handling soft modules in general nonslicing floorplan is a complicated problem. Many previous works have attempted to tackle this problem using heuristics or numerical methods, but none of them can solve it optimally and efficiently. In this paper, we show how this problem can be solved optimally by geometric programming using the Lagrangian relaxation technique. The resulting Lagrangian relaxation subproblem is so simple that the optimal size of each module can be computed in linear time. We implemented this method in a simulated annealing framework based on the sequence pair representation. The geometric program is invoked in every iteration of the annealing process to compute the optimal size of each module to give the best packing. The execution time is much faster (at least 15 times faster for data sets with more than 50 modules) than that of the most updated previous work by Murata and Kuh (1998). For a benchmark data with 49 modules, we take 3.7 h in total for the whole annealing process using a 600-MHz Pentium III processor while the convex programming approach described by Murata and Koh needs seven days using a 250-MHz DEC Alpha. Our technique will also be applicable to other floorplanning algorithms that use constraint graphs to find module positions in the final packing.
منابع مشابه
On extending slicing floorplan to handle L/T-shaped modules andabutment constraints
In floorplanning, it is common that a designer wants to have certain modules abutting with one another in the final packing. The problem of controlling the relative positions of an arbitrary number of modules in floorplan design is nontrivial. Slicing floorplan has an advantageous feature in which the topological structure of the packing can be found without knowing the module dimensions. This ...
متن کاملNon Slicing Floorplan Representations in VLSI Floorplanning: A Summary
Floorplan representation is a fundamental issue in designing a VLSI floorplanning algorithm as the representation has a great impact on the feasibility and complexity of floorplan designs. This survey paper gives an up-to-date account on various nonslicing floorplan representations in VLSI floorplanning.
متن کاملCorner sequence - a P-admissible floorplan representation with a worst case linear-time packing scheme
Floorplanning/placement allocates a set of modules into a chip so that no two modules overlap and some specified objective is optimized. To facilitate floorplanning/placement, we need to develop an efficient and effective representation to model the geometric relationship among modules. In this paper, we present a P-admissible representation, called corner sequence (CS), for nonslicing floorpla...
متن کاملA linear programming-based algorithm for floorplanning in VLSI design
In this paper, we consider a floorplanning problem in the physical design of very large scale integration. We focus on the problem of placing a set of blocks (modules) on a chip with the objective of minimizing area of the chip as well as total wire length. The blocks have different areas and their shapes are either fixed (predetermined) or flexible (to be determined). We use the sequence-pair ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. on CAD of Integrated Circuits and Systems
دوره 20 شماره
صفحات -
تاریخ انتشار 2001